Living on Mars may soon be a fact. colonies need a power source. The most compatible power source is photovoltaic system. The sun is available but weather conditions are necessary to be considered. average temperature is -63, pressure is 4-8.6 mb, atmosphere is very thin (1% thickness of Earth's). Atmosphere contains a lot of dust, gases and water ice clouds.
To design a technology that helps people live on Mars, we developed a model that helps to design photovoltaic systems. The model used feed-forward back-propagation artificial neural network to predict solar radiation in terms of longitude, latitude, time of the day, temperature, altitude, pressure, amount of dust and volume mixing ratio of water ice clouds. The source of Data is Mars Climate Database (MCD). In (MCD), the data sets are based on observations of the Martian atmosphere from April 1999 to July 2013 made by different orbiting instruments: The Thermal Emission Spectrometer (TES) aboard Mars Global Surveyor, The Thermal Emission Imaging System (THEMIS) aboard Mars Odyssey, and the Mars Climate Sounder (MCS) aboard Mars Reconnaissance Orbiter (MRO). In (MCD), they have access to the daily evolution of Martian Atmospheric dust loading as well as to the daily evaluation of the EUV received at Mars from the sun for Mars years 24 to 31 (earth years 1999 to 2013). The associated outputs correspond to the best representation of the Martian climate over these specific years.
Then we used the model to determine the best locations for installing photovoltaic systems and determined the solar belt which is found to be be between latitudes 20°S to 15°N.
REFERENCES
APPELBAUM, J.& FLOOD, D. J. 1990. Solar radiation on Mars. Solar Energy, 45,353-363.
APPELBAUM,J., LANDIS, G. A. & SHERMAN, I. 1993. Solar radiation on Mars—update 1991. Solar Energy, 50, 35-51.
BADESCU,V. 2001. Inference of atmospheric optical depth from near-surfacemeteorological parameters on Mars. RenewableEnergy, 24, 45-57.
BADESCU,V. 2009. Available Solar Energy and Weather Forecasting on Mars Surface. Mars. Springer.
E. MILLOUR, F. F. & LEWIS, S. R. 2017. MARS CLIMATE DATABASEv5.3 USER MANUAL.
F. FORGET, E. M., M. VALS, V. ZAKHAROV (LMD) AND S.R. LEWIS (OU2017. MARS CLIMATE DATABASE v5.3
DETAILED DESIGN DOCUMENT.
FADARE,D. 2009. Modelling of solar energy potential in Nigeria using an artificialneural network model. Applied energy,86, 1410-1422.
GIERASCH,P. J. & GOODY, R. M. 1972. The effect of dust on the temperature of theMartian atmosphere. Journal of theAtmospheric Sciences, 29,400-402.
GOLOMBEK,M., GRANT, J. A., PARKER, T., KASS, D., CRISP, J., SQUYRES, S. W., HALDEMANN,A., ADLER, M., LEE, W. & BRIDGES, N. 2003. Selection of the MarsExploration Rover landing sites. Journalof Geophysical Research: Planets, 108.
GRANT,J. A., GOLOMBEK, M. P., GROTZINGER, J. P., WILSON, S. A., WATKINS, M. M.,VASAVADA, A. R., GRIFFES, J. L. & PARKER, T. J. 2011. The science processfor selecting the landing site for the 2011 Mars Science Laboratory. Planetary and Space Science, 59, 1114-1127.
KADIRGAMA,K., AMIRRUDDIN, A. & BAKAR, R. 2014. Estimation of solar radiation byartificial networks: east coast Malaysia. EnergyProcedia, 52, 383-388.
KHATIB,T., MOHAMED, A., SOPIAN, K. & MAHMOUD, M. 2012. Solar energy prediction forMalaysia using artificial neural networks. InternationalJournal of Photoenergy, 2012.
KUMAR,R., AGGARWAL, R. & SHARMA, J. 2015. Comparison of regression and artificialneural network models for estimation of global solar radiations. Renewable and Sustainable Energy Reviews,52, 1294-1299.
LANDIS,G. A. & JENKINS, P. P. 2002, Dust mitigation for mars solar arrays, Photovoltaic Specialists Conference,Conference Record of the Twenty-Ninth IEEE, 2002. IEEE, 812-815.
MADELEINE,J. B., FORGET, F., MILLOUR, E., NAVARRO, T. & SPIGA, A. 2012. The influenceof radiatively active water ice clouds on the Martian climate. Geophysical Research Letters, 39.
MATZ,E., APPELBAUM, J., TAITEL, Y. & FLOOD, D. 1998. Solar cell temperature onMars. Journal of propulsion and power,14, 119-125.
MOHANDES,M., REHMAN, S. & HALAWANI, T. 1998. Estimation of global solar radiationusing artificial neural networks. RenewableEnergy, 14, 179-184.
NASA.2000. Color-coded elevations on Mars, MOLAAltimeter, MGS Mission. NASA Goddard Spaceflight Center.
NASA.2017. Robotic Mars Exploration [Online].National Aeronautics and Space Administration. Available: https://www.nasa.gov/mission_pages/mars/missions 2018].
REHMAN,S. & MOHANDES, M. 2009. Estimation of diffuse fraction of global solarradiation using artificial neural networks. EnergySources, Part A, 31, 974-984.
SÖZEN,A., ARCAKLIOǦLU, E., ÖZALP, M. & KANIT, E. G. 2004. Use of artificialneural networks for mapping of solar potential in Turkey. Applied Energy, 77,273-286.
TYMVIOS,F. S., MICHAELIDES, S. C. & SKOUTELI, C. S. 2008. Estimation of surfacesolar radiation with artificial neural networks. Modeling solar radiation at the earth’s surface. Springer.
VICENTE-RETORTILLO,Á., VALERO, F., VÁZQUEZ, L. & MARTÍNEZ, G. M. 2015. A model to calculatesolar radiation fluxes on the Martian surface. Journal of Space Weather and Space Climate, 5, A33.
WILLIAMS, D. D. R. 2016. MarsFact Sheet [Online]. Greenbelt, MD 20771: NASA Goddard Space Flight Center.Available: https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html 2018].